library(metapsyData) library(metapsyTools) library(readr) d <- getData("gad-psyctr", version = "23.0.2") dat <- d$data # Convert variable format dat$percent_women = dat$percent_women %>% parse_number() %>% round() dat$mean_age = dat$mean_age %>% parse_number() %>% round(1) # Run combined MA for GAD symptoms filterPoolingData( dat, outcome_domain == "GAD") %>% runMetaAnalysis(which.run = "combined", rho.within.study = 0.5, which.combine = "arms") %>% { .$model.combined$data$.TE = .$model.combined$data$.TE*-1; .$model.combined$data$N = .$model.combined$data$totaln_arm1 + .$model.combined$data$totaln_arm2; .$model.combined$data} -> gad # Run combined MA for anxiety symptoms filterPoolingData( dat, outcome_domain == "gen anx") %>% runMetaAnalysis(which.run = "combined", rho.within.study = 0.5, which.combine = "arms") %>% { .$model.combined$data$.TE = .$model.combined$data$.TE*-1; .$model.combined$data$N = .$model.combined$data$totaln_arm1 + .$model.combined$data$totaln_arm2; .$model.combined$data} -> anx # Run combined MA for worrying filterPoolingData( dat, outcome_domain == "worry") %>% runMetaAnalysis(which.run = "combined", rho.within.study = 0.5, which.combine = "arms") %>% { .$model.combined$data$.TE = .$model.combined$data$.TE*-1; .$model.combined$data$N = .$model.combined$data$totaln_arm1 + .$model.combined$data$totaln_arm2; .$model.combined$data} -> worry # Combine and save list(gad = gad, anx = anx, worry = worry, metadata = d$returnMetadata()) -> GadDB save(GadDB, file="www/data/GadDB.rda")